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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-930

A LINEAR THEORY FOR INFLATABLE PLATES OF ARBITRARY SHAPE

By Harvey G. McComb_ Jr.

SUMMARY

A linear small-deflection theory is developed for the elastic

behavior of inflatable plates of which Airmat is an example. Included

in the theory are the effects of a small linear taper in the depth of

the plate. Solutions are presented for some simple problems in the

lateral deflection and vibration of constant-depth rectangular inflat-

able plates.

INTRODUCTION

For certain types of satellite and reentry vehicles it is desirable

to have a structure which can be packaged in a compact form for launching

and erected after injection into orbit or at the time of reentry. One

possible way of meeting this requirement is to utilize an inflatable

structure. Inflatable structures also have a variety of other applica-

tions where it is desirable to have a small package for transporting and

simple erection capability at the destination. These applications range

from inflatable airplanes to erectable living quarters. Where platelike

structural components are needed in an inflatable structure, for example,

for the lifting surfaces, fins, and control surfaces of a reentry glider,

an inflatable plate such as Airmat (developed by Goodyear Aircraft

Corporation) appears to be an efficient and useful scheme. This type

of plate is illustrated schematically in figure i. It consists of two

woven covers having airtight coatings and held some distance apart by

the combined action of drop cords and internal pressure. The drop cords

are closely spaced, distributed throughout the plate, and may be of

varying length to form a plate of variable thickness. In a reentry-

glider application, for instance, metal wire would most likely be used

to weave the covers and form the drop cords.

In order to make rational stress, deflection, and aeroelastic anal-

yses of inflatable-plate structures, it is necessary to have a theory

from which stresses and deflections in such plates can be calculated for

various external loading conditions. In this report a linear theory for

inflatable plates is derived, and some solutions to elementary static

deflection and vibration problems are presented.
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SYMBOLS

All, AI2, A21,A22,A33

a,b

c

EFt

e

Gt

h

l

Mx, My, Mxy

m

m, n

Nx, Ny, Nxy

0 0 0

Nx, N_, Nxy

* O

Nx = Nx + Nx

o + Ny= Ny

N* o
xy = Nxy + Nxy

orthotropic elastic c_nstants defined in equa-

tions (13)

length of rectangular plate in x- and y-directions,

respectively

root chord length of triangula_ plate

extensional stiffness in warp lirection of cover

extensional stiffness in fill lirection of cover

unit deformation through thickless of plate

shear stiffness of cover

depth of plate

semispan of triangular plate

plate moment resultants

external moments applied to ed,_es of rectangular plate,

positive when causing tensio_l or positive shear in upper
cover

vector components of moments applied to edge of plate,

positive in the positive x- :_nd y-directions, respectively

number of half waves in x- and y-directions, respectively

stress resultants associated w.th xyz coordinate system

and dependent on displacemen_s

stress resultants associated __th xyz coordinate system

and independent of displacem,_nts
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Nx,N ,Nxy

m

NNx, NNy

P

qx' qy' qz

Sx, Sy

s

t

U, V_ W

U' V v W I

_V

Vx,Vy

VN

W

stresses in covers of inflatable plate associated with

x'y'z' coordinate systems

vector components of middle plane forces applied to edge

of plate_ positive in the positive x- and y-directions,

respectively

internal pressure

x-, y-, and z-components, respectively, of external dis-

tributed loading per unit middle-plane area

transverse shear carried in covers due to taper (see eqs. (22))

coordinate along edge of plate (see fig. l(a))

thickness of each cover

displacements in x-, y-, and z-directions_ respectively

displacements in x'-, y'-, and z'-directions, respectively

change in volume of inflatable plate

external lateral loads applied to edges of rectangular

plate

external lateral load applied to edge of plate of arbitrary

shape, positive in the positive z-direction

work of external loads and body forces

x, y, z

x',y',z'

I I I

Cx' Cy, Yxy

5

_,_,_

rectangular Cartesian coordinate system

coordinate systems associated with covers

angles of rotation of the drop cords in the xz- and yz-

planes, respectively, from their initial position normal

to the xy-plane

strains in covers of inflatable plate

variational operator

rectangular Cartesian coordinates locating the final posi-

tions of points on the surfaces of the inflatable plate
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H

HC

HI

0

co

Subscripts :

F,W

m, n

+,-

length-width ratio of rectangu_°ar plate_ b/a

Poisson's ratio associated with a contraction in the fill

direction caused by a tensil_ stress in the warp direction

Poisson's ratio associated with a contraction in the warp

direction caused by a tensil,_ stress in the fill direction

total potential energy

strain energy in covers of inflatable plate

work done against internal pressure

mass of plate per unit middle-_lane area

circular frequency of vibratio_

pertain to fill and warp directions, respectively

integers

pertain to upper and lower covers, respectively

A comma followed by a subscript denote3 partial differentiation with

respect to the subscript. A dot over a symool denotes partial differen-

tiation with respect to time.

BASIC ASSUMPTIONS AND COORDINATE SYSTEMS

The inflatable plate shown in figure l(a) is of arbitrary shape in

planform and may have a small linear taper _n depth in the x- and y-

directions. The taper is assumed to be symuetric about the middle sur-

face. The covers of the plate are assumed to be identical and are

treated as orthotropic membranes. The closely spaced drop cords are

assumed to be straight and inextensional, and they are conceptually

spread continuously over the plate. The drop cords are assumed to be

normal to the middle surface before deformation, but they are assumed

to be hinged at the ends so that during deformation the angles between

the drop cords and the middle surface or the covers may change. The

internal pressure in the plate is assumed to be constant during defor-

mation. Sidewalls are presumed to be present at the edge of the plate

to contain the pressure, but their effects on plate behavior are not

otherwise taken into account.
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In this investigation the undeformed shape of the plate is assumed

to be the shape existing after inflation and after inplane edge loads

are applied. All displacement quantities in the derivation are to be

interpreted as being measured from this undeformed state.

A rectangular xyz coordinate system is chosen so that the middle

surface of the plate lies in the xy-plane as shown in figure l(a). In

addition to the basic xyz coordinate system, two other coordinate systems
I

are used in the analysis. These additional systems are designated x+,

, , y, z Iy+, z+ and x_, _, _. The (+) subscript refers to the upper

cover of the plate or the cover which lies on the positive-z side of the

middle surface and the (-) subscript refers to the lower cover. This

convention is used throughout the report.

The primed coordinate systems are obtained from the xyz system by

small rotations equal to the taper angles of the covers. Thus, the

x+y+-plane is parallel to the upper cover and the x'y_'-plane is parallel

to the lower cover. The coordinate transformations defining the primed

systems are

X : X+ - Z+ y = y+ - z+

h h,y
X = Xt + Zl ,X , ) --

- - 2 y=y_ + z_ 2

h,x h,y

/
h x h,y I

v X t ., 1
z =z_ - _ 2 Y-7j J

(i)

where the quantities h xI2 and h y/2 represent the taper angles as

shown in figure i. These quantities are assumed to be small ( i.e.,

h2,x << i, h 2,y << i, and h_xh y << !) and constant throughout the plate.

DERIVATION OF DIFFERENTIAL EQUATIONS OF EQUILIBRIUM

AND BOUNDARY CONDITIONS

Derivation of Stress-Displacement Relations

It is desirable to derive the theory in terms of stress and dis-

placement quantities which are associated with the overall plate con-

figuration rather than local quantities associated with the individual

covers because these overall quantities can be identified with familiar

quantities in plate theory. The relationships between the local and

overall quantities are discussed in this section. In addition, there
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are derived relations between the overall plate stress resultants and

the overall plate displacements.

Strain-displacement relations.- Displacements in the individual

covers of the inflatable plate in the primel coordinate systems are denoted
! I

by u_ v+3 and w±. These quantities are related to u±, v±, and w±,

the displacements in the xyz coordinate system, by the transformations

h h x
I ,X v

u+ = u+ + w+-_- u_ = u_ - w_ e

v+ : v+ + w+ h,y v' = v - w h,y
2 - ° - 2

w+ : W+ - U+ h'x h,y , _2 v+ -7 w_ : w_ + u_ h'x2 + v_ h,Y2

(2)

The strains in the individual covers are defined in the primed coordinate

systems in the usual manner:

I,
+

, by+ i bw 2

Cy± - --+by+ _ <-z' \by+/

l I 1

b_ by+ b_,± bw±

7xy ± b ' + <--T + ' b 'y± bx± b::± y±

I
i

l

L

J

(3)

The following plate displacement quan;ities are now introduced:

U --

U+ + U_

2

U+ - U_

h

v++v_ w++__h,
V = W = "

2 2

_ v+- v e - w+- w_ i
h h ./

(4)

The quantities u, v, and w are simply _he averages of the displace-

ments in the upper and lower covers in the x-_ y-, and z-directions,

respectively. For small displacements, the quantities _ and _ are

L
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the angles between the drop cords and the z-axis in the xz- and yz-planes,

respectively, or, in other words, _ and _ are the rotations of the

drop cords during deformation. These displacements and rotations are

shown in figure 2 in their positive senses. The quantity e represents

the unit defomation or "strain" through the thickness of the plate.

Since the drop cords are assumed inextensional, e is not an independent

quantity for small deformations but is related to _ and _ by the

equation

_2 p2
e - (5)

2 2

With the use of equations (i) to (4) the following sum-and-difference

quantities necessary to the subsequent development may be calculated:

! ' I I

CX+ + EX__ EX+ - EX__

1 , i ,

ey+ + Cy_ ey+ - Cy_

7xy+ + 7xy- xy+ 7xy-

In order to illustrate these calculations_ consider the quantity

, _4 __(_w+k_ _u' __(_w_'_
= _ _ ) (_)

obtained from the first two of equations (3). From equations (i) and (2)

Su+ _ l+(x,y) + h,x w+(x,y_$X, _ _+ h,x w+(x,y 1_x+- _x -i- _ + _ (:<'Y)+ _ By' 2 _

= (U+ h x+ -7 w+)
,X

(7)

Similarly,

_w+ _ ( h x h y v+ \ (8)
_x_ w+ 2 u+ 2 ),x

and so forth. When equations (7) and (8) and their counterparts for the

derivatives of u" and w" are used and when it is remembered that

h,x and h,y are constants, equation (6) becomes



, , h, x
Cx++ Cx_ = u+,x + -_- w+,x + u_,x h, x i 12 h2

,x 2
w x + +e -, _ +,x --g-U+,x

h 2
,y 2

+ --_--v+, x -

h, xh,y

h, xW+, xU+, x - h, yW+, xV+, x + 2 U+_ XV+_ X

h 2
2 ,x 2

+ w + --
--3X 4 U-'X

h2 2

'Y v + h, xw -+ _ -,X ,xU- _X

h, xh, y

+h 2_yW_ xV_ X +

The use of equations (4) then leads to

' + ' = 2U6X+ 6x_ _X + h xe } 4 _(he,x

h 2
2

+ h, xe )2 + ___ u, x

h2 h2 h2 )2
2 ,x x h,x_) 2 i_ (h_, x h,x_+ --_ V,x + _--(h_, + + +

(9)

h'xw2 ,X ,x + h xe) u x

+ h xe)V x

L
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h, xh,y

+ 2 u xV x + h'-C (h x= hOt,x)(h,x _ + h_,x) (i0)

After substitution of equation (5) certain terms can be neglected in equa-

tion (i0). In the first place, terms whicl contain u, v, w, _, and

and/or their derivatives to higher than second degree are assumed to be

small. Such terms ultimately lead to nonlinear equilibrium equations

and are neglected in this theory. Second-c.egree terms in equation (i0)

lead to linear terms in the equilibrium eq1_ations and are retained here.

terms containing h2x , h2y, or h, xh,y are neglected becauseSecondly,

the taper is assumed to be small.

When the approach just described is e_:tended to the other sum-and-

difference quantities the results are
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6X+ + 6X_ _ W,X - 2_., ,

, , ( )ey+ + ey_ = 2v + 2,y W,y - ,y_,y _ + W,y + h,y_,y_ + h,x _,yw

7xy+ + _xy- = 2U,y + 2V,x + 2W,xW, y - ,x_,y(_ + W,x )

+ h,y_,x(_ + W,y) + h,x_,y_ + h,x_,xW, y

+h +hy_ x_,y_, x _ , , yW,

_X+ - 6X- = h(Z,x + h,x(_ + W,x) - h,xW, xU, x - h, yw, xV, x

! !

ey+ - Cy_ = h_,y + h,y(_ + W,y) - h, xW, yU, y - h, yW, yV y

! !

_+- 'xy-=hty+htx+h,y(_+w,_)+ <x(_ +W,y)

- h,_(w,_u,y+ W,y<x)- <y(W,x<y+ W,yV,x)

(ll)

Stress-strain relations.- The strains in the covers are related to

stresses in the covers through the orthotropic stress-strain relations

f f r

Nx± = Allex+ + Al2ey ±

I ! !

Ny± = A216x+ + A22Cy±

! I

_x_a,+_ = A557x_ -

(12)

! !

when the principal directions of the covers are alined with x± and y±

axes. Note that the N' quantities, the stresses in the covers, are

expressed in terms of force per unit length rather than the conventional

force per unit area. If the covers are simply woven fabric, for instance,
!

with the warp and fill alined with the xl and y+ axes, respectivelyj
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then the coefficients of the strains in equations (12) are related to
the usual orthotropic elastic constants for the cover materials by

Ewt EFt
All = A22

1- _wF_w 1- _w_;w

_FwEw t _WFEF t

AI2 1- _WF_F w A21 i- _WF_FW

A33 = Gt

(13)

The Poisson's ratios are related by _FwEw t = _wFEFt; therefore,

AI2 = A21.

Stress-displacement relations.- It is appropriate, now, to intro-

duce stress quantities Nx± , Ny±, and Nxy ± associated with the

xyz coordinate system and to define the follo_ing overall plate stress

and moment resultants:

Nx = Nx+ + Nx_

Ny = Ny+ + Ny_

Nxy = Nxy + + Nxy_ h N _:% xy+

(14)

L
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The assumption that the taper angles are smal] so that second-degree

terms in h,x and h,y are negligible compaled to unity justifies

replacing Nx± by Ni±, Ny+_ by

equations (14) become

| I

Nx+ + Nx_ = Nx

N__, and _xy± by Nxy ±. Thus,

, , 2aMx

Nx+- _x- h

! !

Ny+ + Ny_ = Ny
, , 2My

Ny+- _y_ - h

Nxy + + Nxy_ = Nxy

2Mxy
! ! __

Nxy + - Nxy - h

(15)
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The sums of the stress resultants in the upper and lower covers become

plate stress resultants and the differences are associated with plate

moment and twist resultants. These plate quantities are shown in fig-

ure 2 in their positive senses.

When the three pairs of equations (12) are added and subtracted

there results

' + ' = 6X+ + 6X_ + +

Ny+ + Ny_ = A21 Cx+ + _x- + +

' N' ' 'Nxy+ + xy- = A33(_xy+ + 7xy-)

, , (, ,) (, ,)Nx+ - Nx- = All Cx+ - _x- + AI2 Cy+ - _y_

(, ,) (, ,)Ny+- Ny_ - -' ' = A21 Cx+ Cx- + A22 Cy+ _y-

! ! I !

Nxy+- Nxy_= A33(Txy+- 7xy-)

(16)

Equations (ii) and (15) are now substituted into equations (16) and all

nonlinear terms are neglected to obtain the following linear stress dis-

placement equations:

Nx = 2(AllU x + Al2V, y)

Ny = 2(A21u 'x + A22v, y)

Nxy= 2A33(uy + v x)

(17)
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Use of the Principle of Minimum [_otential Energy

The differential equations and boundary conditions are derived by

using the principle of minimum potential energy. For the problem under

consideration this principle may be stated a_ follows: When the plate

is in equilibrium under external and body forces, the variation of the

total potential energy with respect to variations in the five displace-

ment quantities u, v, w, % and _ must be zero. The total poten-

tial energy is the sum of the strain energy in the covers and the poten-

tial energy of the internal pressurized gas minus the work done by the

external and body forces. The principle can be written

+ -w)=o (18)

where the three quantities 5]IC, 8HI, and 5W are expressed in terms

of plate stress resultants and plate displacements. The variational

operations indicated by the symbol 8 are p_rformed in detail with

respect to the displacements. When the coefficients of 8u, By, 8w,

5% and 8_ are equated to zero there resul_s a system of five linear

partial differential equations and associated boundary conditions which

govern the behavior of inflatable plates.

Strain ener_ in covers.- The variation of the strain energy in the

covers corresponding to arbitrary variations 5u_ 5v, 5w, 5% and 5_

of the displacements may be written as follo_s for a slightly tapered

plate of arbitrary shape:

, ,. , ,. , ,* , _(xJ,yJ)l

+ (Nx_Sex_ + Ny_Sey_ + Nxy_SYxy_) 8Zx,Y\_Ljdx dy (19)

where

,* ,O I

Nx± = Nx± + Nx!+

N'* ,o ,
y-i_ = Nyi-_ + Ny!

,_ tO v

Nxy!_ = Nxy!_ + Nxy!_

L

9
1

9



13

or, since the Jacobians

unity,

of the transformations (i) are both

i(. ,* N'*4 ' ' i(- ,* ,* , ,+ _,i_y++ y_,_(_y++ _y_)+ _,_y+-_y_)_(_y+-_y_)

' ' IfN'* '* ' ' )I!c_'_ _'__5(_y++ 7_y_)+ 2'_y+-"xy-)_(_y+- _xy-_ dy+ 2v'xY+ + xy-j

(20)

The region of integration is the middle plane of the plate. Equation (20)

can be expressed in terms of plate stress and displacement quantities by

using equations (ii) and the following equations analogous to equa-

tions (15) :

Nx+ + Nx_ = Nx
,_ ,. 2a_dX

Nx+ - Nx- - h

Ny+ + Ny_ = Ny Ny+ - Ny_ - h

Nxy + + Nxy_ = Nxy

,_ ,. 2Mxy

Nxy + - Nxy - - h

When these substitutions are made, terms which consist of the product

Ny,of inplane stress resultants Nxy ) and second-degree displace-

ment quantities are retained because these stress resultants contain

contributions which are independent of displacements (such as from

internal pressure) and hence yield linear terms in the differential

equations. Elsewhere, second-degree displacement quantities are neg-

lected. With the use of equations (Ii) the expression for the variation

of the strain energy in the covers can be written as follows with slight

rearrangement:
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5H C 5 + i w 2 hh x
,x _ ,x 4

i hh, y+ Ny5 ,y + _ _y 4

"E+ Nxy5 ,Y + V,x + W,x w,y

hh x

_x(_ + w_) 4 _,x_ - "-'g-- _,xw,

hh, y hh, x _I

hh x

4 _'Y (_ + w'x)

hh, y

4 _,x(_ + w,y)

where

hh, x hh, x hh, y hh, y x_4 _,Y_ 4 _,xW, Y 4 _, x_ 4 _, yW, + MxS_, x
J

+%%y +_ys(_,y+ _,x)+ Sx_(_+W,x)+ %8(_+w,j)_dy

Sx and Sy are defined by

i
Sx : [(h,_Mx+ h,_y)

i
% :_(h,_y +h,F%)

(21)

(22)

These quantities represent that portion of the transverse shear which is

carried in the covers by virtue of the taper.

Potential energy of internal pressure.- ['he variation of the poten-

tial energy of the pressurized gas inside the inflatable plate is the

product of the magnitude of the internal pressure and the change in

volume due to virtual displacements 5u, 5v, 5w, 5_, and 5_. The

increase in volume of the plate due to any set of small displacements

u±, v±, and w± in the covers and along the edge_ denoted _V, is

calculated from

AV =-_f S _(_,q)d_ d_- l_h dx dy
(23)

L
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In the first integral _, _, and _ are recnangular Cartesian coordi-

nates locating the final positions of points ,_n the surface of the plate

and are functions of certain of the displacem_nts u±, v±, and w±.

The surface integration is performed over the entire outer surface of
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the plate (over the upper and lower covers and along the edge) in such

a manner that the surface is oriented with positive inward normal. (See

ref. I.) The second integral is performed over the middle surface of

the plate at its initial position and represents the volume before defor-

mation. The details of this calculation are presented in appendix A.

The variation of the potential energy of the internal gas can be

written 5H I = -p5 AV and the results of the calculation in appendix A

yield

8_I =-p_ h + + u, - u, + - _,y_,x),x v y xv, y yV x _-_ (c_,x_3 y

2 _-_w,2 x- _w,y]_xdy}

In this expression quantities which are higher than second degree in u,

v, w_ _, and _ or their derivatives are neglected. The double inte-

gration is performed over the undeformed middle surface of the plate.

(24)

Work of external and body forces.- The plate may be loaded by dis-

tributed forces, inertia forces, and forces and moments acting on the

boundaries. The variation of the work of these forces may be written

as

8W = qxSU + qybV + qz_W - p_Su - pVSv - p_;$w - -_- p_5_ - -4--P_'8_ dx dy

(25)

As before, the double integral is performed over the middle surface of

the undeformed plate. The line integral is around the boundary of the

undeformed middle surface and positive in the clockwise sense looking

in the positive z-direction. (See fig. l(a).)

Equilibrium Equations and Boundary Conditions

The previously derived parts of the variation of the potential

energy are now collected3 and where required variational operations are

performed in detail. Equation (18) thus becomes:
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The tems with partial derivatives of varied quantities are integrated

by using Gauss' theorem which can be written as follows (see ref. i):

_N _N/
(27)

The operator _/_N denotes differentiation in the direction of the

//"inward normal. For example, a term like NxSU, x dx dy in equa-

tion (26) is handled as follows:

/ F * _x(NxSU),x dx dy =- Nx_U -- ds
_N

(28)

or

y ym _ N _NxSU, x dx dy = -_)NxBU Sx ds xSU dx dy
SN x,

(29)

When Gauss' theorem is applied in this fashion to terms in the double

integral of equation (26), there results

- Nx, x + - ph - + + -j Nxy, y _x ph, xv, y ph yV, x q-x p[i 5u + Ny, y

+_,, x- _, _- _ _u,x+_, _u,,+_- _)_ + _:,_+_x,,_)_,x

+ Ny, y + Nxy ,x W,y + Nxw _xx + 2Nxyw, xy + Nyw, yy + Sx, x + Sy, y + Ph, x _

_,x <x-,- y)..,x-,-(_,_+_x_,_)_,,+ ph,y_ + p_(%x + _s,y) 4 N_y,

+ Nx_, xx + 2Nxy_, xy + 4 Y' y + Nxy' x) _, y

+ Nxy, y _,x + Nx_,xx + 2Nxy_,xy + Ny_, + qz - P 5w

ph 2 hh, x r

- Sx-ph(_+Wx)---c(h,xty- h,y_,x)4 [_'_,x

+ iMx, x + Mxy, y

+ Nxy, y)(a + W,x )

(Equation continued on next page)
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+ Ny, y + Nxy ,x W,y + Nxw ,xx + 2-Nxyw,xy + N_.w, _ _ y,y + Nxy, xJ°_

4 o _&+ ,y+_y,x- Sy ph(_+w,:r) Ph2( _._- _ T_h,K,x- h xC_,y)

hh y _ . . . . . .4 _,_÷_x_,x)(_+_,_I+(_x,x+_,_)_,x+_x_,xx+_x_w,x_

j((- Nx + Nxy_ - ph_ - phv,y_ + P_J,x_ + NNx)SU

Ny 8y . 8x+ _-N + Nxy 8N _)y 8y 8x )ph -_ - phu, x -_ + phu, y -_-_ + NNy 5v

* bx * 8y * c)y * 8x 8x 8y+ x_,x_ + _'y_,y_ + _'xy_,x_ + NxyW,y _ + s__ + sy

8x 8y --

+ phcL-_ + ph6 -_ + VN hh, x (N* 8x4 xC5 x _-_
8y . 8x

+ NyC,,y _-_ + NxyC_'y _-_

+ NxyC_'x _-N - 4 _( x_,x _ + Ny_ y -_ + N>y_, x _-_ + NxyG y 8w

(Mx8 x 8y hh x _,. C):' * 8y * 8X+ _ + %_ _ + [% _ [_x(_+ _,x)_+ _,_ _ + _x_,_i6

+ Nxy ( + w x _J _ _ + N]_ _ - 7- ,_ _-_

_} _ _x_,x _ _ + _ + %_ _ - _x
_- _x

_'__*(_+ _,_)_+ _,x

+ Nxyw, x _N 4 x_ _-_

12 ,x _-_- _',y 8 ds = 0 (_o)
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In writing equation (30) second-degree terms in h,x and h,y are

neglected, and use has been made of the fact that h and h are con-,x ,y

stants. By the usual arguments of the calculus of variations, the coeffi-

cients of the quantities 8u, By, 8w, 8_, and _ in the double integral

can be equated to zero individually. This procedure gives a system of

five partial differential equations of equilibrium. The first two equa-

tions describe the equilibrium conditions for the inplane forces, the

third is the lateral-force equilibrium equation, and the final two are

moment equilibrium equations.

The last three partial differential equations, those associated with

lateral forces and moments, can be simplified by some additional manipu-

lation. The lateral-force equation is simplified by using the two inplane

force equilibrium equations to substitute for the quantities Nx, x + Nxy, y

and Ny, y + Nxy, x. Terms in the resulting expression are neglected if

they contain second-degree quantities in h,x and h,y or nonlinear

quantities in the displacements or their derivatives. In addition, terms

which contain products of an external loading and a displacement quantity

are nonlinear and are dropped. The moment equilibrium equations are

simplified by using the inplane force equations and also by substituting

for the quantity Nxw, xx + 2_NxyW, xy + Nyw, yy from the simplified lateral-

force equilibrium equation. The same sorts of quantities are neglected

as mentioned previously. In order to neglect all such quantities, the

. . Nxyassumption must be made that the inplane stress resultants Nx, Ny,

are not of a higher order of magnitude than the quantity ph. The

simplified equations of equilibrium which result from these manipula-
tions are

* * - ph (i + v y) + + qx = 0H (31a)Nx, x + Nxy, y ,x , ph, yV, x

N*y,y+ _y,x- phy(1+ U,x)+ Ph,xU,y+ qy=p_ (31b)

-[(,x_+ h y_ + Sx,x + Sy,y+ ph,x(_+ W,x)
,xy

+ phy(_+ W y)+ ph(tx + _y)+ qz---_ (31c)



2O

x_ hh, x h2Mx,x+Mxy,y- Sx-ph +w,x-_(h,x_+<_r_),+n--(qz-_) =_ p_

(31a)

My, y + Mxy_x - Yl hh y i h 2sy- ph +w,y-_(h,x_+h,:_),+u--tqz-p_)=T _"

(31e)

* * and *
Note that in equation (31c) the stress resultants Nx, Ny, Nxy must

0 0 0

be replaced by Nx, Ny, and Nxy in order ;o linearize the equation.
r-- "-]

Nonlinear terms like Nxlw - h(h x_ + h y_)l are assumed to be small

t _ j ,XX

compared with the linear terms and are neglected.

The appropriate boundary conditions are obtained by equating to

zero the line integral in equation (30). Th_ usual arguments of the

calculus of variations lead to the following boundary conditions on the

boundary of the plate middle surface:

or

or

u=O

- *x- ph(1+ v, oos(_,x)- _xy+ ph_,xcos(N,y)--_N:_

v : 0

(32a)

w=O

or

+ NxyO _x - h,x _ + h y_) + Sy + ph co_(N_y) = VN J

(32c)

L
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_=0

or

12

+ Ph.___} _ -
12 ,x

Eo o j)_,y _ _h h,x(_ + W,x)+Nxy(h,yc_+ h,xw,y cos(rex) - xy

gLxy ,x ,x ,y
J

(52a)

=0

or

+ Ph____

12

_-,x-_ ,x(_+w,_)+_°y(_,x_+_,_W,xoo_(_,y)+

_o I)oo_('_,x)=_xty- _ x_,y(_ + W,y)+ _°(h,x_ + h,yW,x

In these equations the relations

_x _ cos(N,x)
_N

-_ : cos(N,y)
_N

(33)

are used where (N,x) represents the angle between the inward normal and

the positive x-axis and (N,y) represents the angle between the inward

normal and the positive y-axis. The differential equations (31) and

boundary conditions (32) govern the behavior of inflatable plates. In

addition to these equations the linearized stress displacement rela-

tions, equations (17), are required to complete the system.

Limitation of Linear Theory

The range of validity of linear theory certainly depends on the

specific problem under consideration. In some problems linear theory

might be valid up to substantially larger deflections than in other

problems. In order to obtain a rough indication of what this range of

validity is, one simple problem is investigated in appendix B. The
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lateral deflection of a long plate simply supported on its long edges and
under uniform load is considered where the s:mply supported edges of the
plate are prevented from moving together. Calculations madeby a simpli-
fied nonlinear theory are comparedwith calc_ations madeby the linear
theory. The results show that the linear rel_ult is within 5 percent of
the nonlinear result if the following condit:on holds:

2
wI

(J + 1)_ < 0.05

where

where wI is the lateral deflection at the _enter of the plate, and

where L is the distance between the simply supported edges. Of course,

this result is strictly applicable to this o:_e problem only but it does

give a rough indication of what might happen in other problems.

L

9
i
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SOME SOLUTIONS FOR RECTANGULAR PLATES

Solutions are now presented to some specific problems in the deflec-

tion and vibration of constant-depth rectang_11ar inflatable plates sup-

ported on all edges. Consideration is given to static deflection under

uniformly distributed lateral load and vibration modes and frequencies

of both simply supported and clamped plates. A comparison between

results calculated from these solutions and some experiments conducted

on a square inflatable plate is presented iz reference 2.

Consider a rectangular plate of constart depth supported along

edges x = 0,a and y = 0,b. For the case where no edge loads are

prescribed, the boundary conditions, equations (32), are as follows:

on x = O,a,

or uo )
N x - ph + V,y) = 0

(34a)

or v0 )
* = 0

Nxy + phu, y
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or

or

Ol_

and on

Or

or

y = O,b,

w=0

O o

Nxw, x + Nxyw, y + ph(_ = 0

o=o )Mx ph 3
12 _,Y = 0

Mxy + ph3yT-_ --o,Y

u=O

Nxy + phv x = 0

)
u 3 x

(34c)

(34_)

(34e)

(35a)

(35b)

or

or

or

w=O

0 0

Nywj y + Nxyw 'x
+ phB = 01

_=0

ph 3
_y + i-T-_,x

=0

ph 3
c_
3x

=0

=0

(35c)

(35_)

(35e)
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If the H and V accelerations are neglected and only lateral loads

are considered, the differential equations 131) become

Nx, x + Nxy, y = 0

Ny, y + Nxy, x = 0

o NyW,NxW, xx + yy
0

+ _xyw,xy + P_(%x + _,y) + q_. (36)

h 2

_,x + _y,y- ph(=+ w x) =_ _

h 2
5,y + Mxy,x- ph(_+ W y):_ p_"

L
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The portions of the stress resultants which are independent of dis-

placements must satisfy the following differential equations:

o o = 0
Nx, x + Nxy, y

N ° + o = 0
y, y Nxy, x

and, if u and v are not prescribed on tire boundaries, the following

boundary conditions must be satisfied:

on x = 03a,

o ph =0Nx -

and on y = 0,b,

O

Nxy = 0

N°y = 0

o ph =0Ny-

The solution to this system is

o o =phN x = Ny

>

_oy_= 0

(37)
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The first two of equations (36) contain only u and v and the remaining

three contain only w, _, and _. Since for the particular problem under

consideration the lateral deflection is desired_ the fact that the u

and v equations uncouple from the others means that it is necessary to

consider only the last three of the differential equations (36) and the

appropriate boundary conditions. These differential equations reduce to

+ ph(_+ W y) Y + qz = P_ph(_.W,X)x

h2

_,x*_,y -ph(_.w x):T_ _

h2

My,y + Mxy,x- ph(_+ _y) :T p_"

(38)

and the boundary conditions become:

on x = 0,a,

we )or (39a)

ph(c_ + W,x ) = 0

or ( 39b )

Ph3 _,Mx 12 Y=

or (39c )

Mxy + Ph3
i--_-%Y =

and on y = 0, b,

wo )or (40a)

ph(_+ W,y): o
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or (4Oh)

Mxy + Ph--'-_}B, x = )
12

o:o )or (40c)
Ph3 c_ = 0

- 1-7-

Finally, from the last three of equations (17) the moments are written

in terms of the rotations

h2

: T(Alltx+ A12 , D

h 2

h 2

(41)

The differential equations (38) have the same form as the well-

known equations for the lateral motion of a uliform plate with trans-

verse shear flexibility and rotary inertia. (See, for example, ref. 3-)

In this case the quantity ph plays the role of the transverse shear

stiffness per unit width. The salient conclusion of this investigation,

therefore, is that an inflatable plate can be considered as a particular

type of sandwich plate where the pressurized gas acts as the core material.

Note, however, that certain terms peculiar to inflatable plates appear in

the boundary conditions (39) and (40). These terms are associated with

the deformations of the edge walls in the pre_ence of internal pressure.

Consideration should be given to the importance of these terms before

sandwich-plate solutions are applied to inflatable-plate problems.

When equations (41) are substituted into the differential equa-

tions (38) there results

L

9
1

9
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ph(c_ + W,x),x + ph(_+ bY) y + qz = o:J

h-_ (All c_,xx h2+ Al2_,xy) + _- A35(_,yy + 8, xy) - ph(_ + w, ) - ph2x 4

h_ (A21_, xy h2 ph2+ A22_,yy) + _ A33(_,yx + 8, xx) - ph(_ + W,y) = --g-

The differential equations are now expressed entirely in terms of the

plate lateral displacements w and plate rotations _ and 8.

(42)

Simply Supported Rectangular Plates

For the case where all boundaries of the plate x = 0, a and y = 0, b

are simply supported, a reasonable set of boundary conditions can be

written from equations (59) and (40), with the help of equations (41),
in the form

and

w(O,y) = w(a,y) = 0

8(O,y) = _(a,y) = 0

%x(O,y) : %x(a,y) = o

w(x,O): w(x,b): 0

=(x,O): =(x,b)= 0

_,y(X,0) : _,y(X,b): 0

Static deflection under uniform lateral load.- The response of the

plate to a uniform lateral load is governed by equations (42) with

terms _, _, and _ set equal to zero and the term qz regarded as

constant. It is seen that the boundary conditions (45) and (44) are

satisfied by displacements and rotations of the form

(43)

(44)
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oo GO

W ----- 2 _ Wrnn sin m_( sin n_Y-a- -Z-

m=l n=l

oo co

22 sinn Y: _mn cos -2- -g-

m=l n=l

oo oo

_ 2 _ _mn BanZai( m_y
= -- COS-

a b _
m=l n=l

(45)

When equations (45) are substituted into equations (42) reduced as just

indicated, there results
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m=l n=l

_(_mn + Wren _>_sin m_---_xsin n_y - qza b ph

All _ 2+ A33 C_mn + (AI2 + A33) _ n_T _mn
m=l

2P_(cSnn m_ Wmn)_COS m_x sin n_Y-o (46)
+ +_- --A- b

mx 2 A= _m_ n_
22 + A}} _mn + (AI2 + .3J-a--b- C_mn

m=l

2ph/g n_ Wmn) 1 m_x n_y _ 0
+ _-_mn +-b- sin T cos -_- -

J

Equating to zero the coefficients of the Fourier series in the last two

of equations (46) yields equations for _mn and 8mn in terms of Wmn.

The constant term qz/ph in the first of equations (46) can be expanded

in a double sine series in the interval 0 _ x _ a, 0 _ y _ b to yield

the equation
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(_ 71 _mn n 16 qz i (m and n odd)
m 2 n2 C_an m +

Wren + / + _ a _ b _ ph mn

0onWmn + + _--+ -0 (m or n even)a _ b

(47)
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When the expressions for c_nn and _mn in terms of Wmn are st_sti-

tuted into equation (47), the resulting equation can be solved for Wmn.

This procedure leads to the following expression for Wmn in dimension-

less form (for m and n odd):

Wmn _ R_. (48)

h mn _(1 _--_amnR2p2\ 2-AmnRP_mn + (_2m2 - n2)2_3,_}

where

- 4qz

_2p

4b 2
R -

_2h2

_ ph

All

Am_=_

amn = h2m 2 + n2

b= :2(_2+_33n2)
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and where

Cmn = 2(A22 n2 + A33_,2m 2)

emn = %2m2n2(l + _22 - 2A12)

AI2 - A12
All

L
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For either m or n even, all coefficients Wren, C_nn, and 8mn vanish.

Natural frequencies of vibration.- The free vibration of a simply

supported rectangular plate is governed by differential equations (42)

with qz set equal to zero and boundary corditions (eqs. (43) and (44))

assumed to hold for all time. The functions (for m = l, 2, and

n = i, 2, .)

w = --w_.ei_tsin m_x sin nKy

a = --_ei_Otco s m____xsin n____y
a b

- i_tsi n m_x m_y
= _mn e --_- ecs -K-

(49)

are seen to satisfy the boundary conditions, equations (43) and (44).

When equations (49) are substituted into equations (42) (with qz = O)

there results (for m = l, 2, . and n = l, 2, .)
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h + - _ _ + phy_ n + ph--_ =0

Ph"_'_rmn+ h+" 5- ll-- +A53 -4 m _mn

h__ _ (A _33)_:0+ 2 a 12 + mn

n_

_p 21 _2 a b ze+A}} + h+w_22_-6- ] +A53 -,
i

or in dimensionless form

(50)

pkm _,b h_2/ 2 2 2--h + _--_ m + _33 n -_)

pn h_-_2%mn(_12 + A33)
2b

pn

2b

_b h_2(_ 2 ._33), 2.m2 k 2"_
h + 2-_-k 22n + ° "_')

h I

(5z}

where k 2 _°2b2
- is the frequency parameter. When the determinant of

All _2

the coefficients of Wmn, _mn, and _mn is equated to zero and after

some algebraic manipulation, the following equation results:

+(_=_=-4,)ilk_- _""mn- _'%(_mn_,_- _):o (_)
where the only symbol not previously defined is

finn = Z2m2bmn + neCmn + 2kmndmn
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The solutions to equations (52) define the natural vibration frequencies
of the simply supported plate corresponding to the modeshapes given by
equations (49).

ClampedRectangular Plates

Suppose, now, that instead of boundary ccnditions as given by equa-
tions (43) and (44), the following boundary conditions are prescribed
for a rectangular plate:

w(0,y)= w(a,y)= 0

_(o,y)= _(a,y)= o

_(O,y) = _(a,y) = 0

(53)

and

w(x,o)= w(x,b)= o ']

_(x,O)= _(x,b)= 0

_(x,O) = _(x,b) = o

(54)

These boundary conditions are appropriate for a plate with all edges

clamped. The differential equations (42) musl now be solved in conjunc-

tion with conditions (53) and (54).

Static deflection under uniform lateral load.- In equations (42)

set _, _, and _ equal to zero and regard qz as constant. The fol-

lowing deflection and rotation functions sati_fy the boundary condi-

tions (53) and (54):

W _ _ w_sinm_X n_y
= -- s:.n --

a b

m=l n=l

m_x n_y%m sin- s_.na b

m=l n=l

= _mn sin m_x s:n-
a b

m=l n=l

(55)
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that is, w, % and _ are zero on all boundaries. Substituting equa-

tions (55) in the reduced differential equations (42) yields
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m=l n=l

%+ gmn sin 7 cos ph

[_)U m_x n_y m_ m_x n_y+ sin _ sin _ + _ -_- cos T sin

m_ m_x n_y m2_ 2

WmnPh _- cos 7 sin _ - _ h + ii a2
m=l

m_ n_ h_(_ ) m_x _
+ _mn _ b _ 12 + A33 cos _ cos = 0

_ n_=_l<_WmnP h n__ sin m____xcos -- + (A + )

n_y m_ n_ h 2 m_x n_y

a_u a b _ 12 A33 cos -_ cos --b a b b

m=l

_ (A2 n2_2 m2_2\h2_ m_x _)- _ h+ 2-7+ A,, =_-)_Jsln --&-sin = 0

n2_2_h2_ mnx n_y

+ A55 =_-/_Jsin V sin

(56)

The Galerkin method is now applied by multiplying through all of equa-

tions (56) by sin i____XXasin _ (where i and J are integers) and

integrating over x from 0 to a and over y from 0 to b. The

resulting equations are written in dimensionless form as follows:

_____]_ (± Ix + j2) + m_nJYim + n_inTjn phi2 lj

m=l n=l

mk J Tim - + _---[1 _ + _33J 2 aij + _-_(A12 + A33 mkn_mnTimTJn = 0

m=l m=l n=l

P _ n win 7b( )_ _-_ _ h_2{_ " -2 2)_--_ 7J n + i12 + i5_ mkn_mnTimYJn - + 2--b--LA22J + A33 i2h _ij =

n=l m=l n=l

)(57)
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where (using r and s as integers)

(-i) r-s - 1 (-i_,r+s - 1
+ (r_s)

7rs = r- s I+ s

7rs = 0 (r = s)

Examination of equations (57) shows that the unknowns wij are nonzero

only for odd values of i and j, the unkn¢wns cuij are nonzero only

for even values of i and odd values of j, and the unknowns _ij are

nonzero only for odd values of i and even values of j. For a first

approximation, truncate the system (57) by _aking i = i, 2 and j = 1,2

and summing over m = i, 2 and n = i, 2. Equations (57) reduce to

L
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8

- +2--i-

_ h-
A + x33)9

W.l.1
h

_21

_12

16q_bl

ph_=

= 0

0

(58)

and three additional sets of equations whic]_ are homogeneous by virtue

of the symmetry of the loading and, hence, yield the trivial results

Wl2 = w21 = w22 = _ll = _12 = _22 = _ll = _21 = _22 = 0. The last two

of equations (58) can be solved for _21 mid _12 in terms of Wll/h.

Substituting these expressions into the fir:;t of equations (58) and

solving for Wll/h results in

Wll R_l

i _ Jail + - -- _d229_ 2 9_ 2 - 9_2

(59)

where

More accurate approximations can be obtained by taking more terms in the

series for w, _, and _, but the number of simultaneous equations which

must be solved increases rapidly.
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Natural frequencies of vibration.- For the free vibrations of a

clamped rectangular plate assume deflection and rotation functions as

follows:

W _

oo oo

ZZ _mnei_tsin sin --
a b

m=l n=l

oo oo

Z  ei tslnsin
m=l n=l

oo oo

Z Z _mnei_tsin m____Xasin n____yb

m=l n=l

(60)

When equations (60) are substituted into differential equations (42) with

qz set equal to zero there results

_ _ _°<I___ Im2_ 2 n2_2_ - m_x n_y
m=l n=l - k a 2 + 7_ wmn sin -_-- sin

+ _mn _m_ Tm_x nn-Yb _}
cos sin + 8mn n_ m_x_-- sin _ cos = 0

Z DmnP h mg mgx - h 2 co2 h 2 m2_ 2
-_- cos T sin n_Yb + _ - ph - -_ ii 7 + A35 b 2 /_

m=l n=l k._

_( ) m_x nb__)
+ _mn m_ n_ AIR + A55 cos T cos = 0Kb

iTM -- n_y m_x ngy/ n_ m_x m_ n_ 2
b -'K- cos _ + 5mn _ b _ 12 + A3} cos --g-- cos

m=l

- _ h2 h2(A2 n2_ 2 m2_2_ m_x _._+ _mn_ _D2 ph - --_ 2 b--_- + A_ _ sin T sin = 0

sin m__.__xsin n_y
a b

(6z)



Application of the Galerkin method as used in the previous section leads
to the following system of equations in dime1_sionlessform:

Z m_mjTi m - _ n_inTjn = 0
m=l n=l

[2h k2mh-_- Tim + _b h

m=l

_2h_2_ 2 + i33J2)_ -2b _ij

oo oo

h i
+ _( 12 + _33) Z I m_mnTimTjn = 0

m=l n=l

OO -- OO 00

- Z Win h _ Z _]]] -p n -_- 7jn + _( 12 + A33) mhn_nlYimT Jn

n=l m=l n=l

÷ _2h f-_ ,2 _ij )
_A22J + X33i2_ 2_ =

> (62)

Limit consideration to the first four terms of each of the series

in equations (60); thus, the integers i anl j in equations (62) are

taken to be 1 and 2 and the summations are c_rried out over m = l, 2

and n = 13 2. It is found that only certai_ terms couple. The Wll

coefficient couples with _21 and _12, Wl2 couples with _22 and

_ll _ _21 couples with _ll and _22' and finally _22 couples with

_12 and _21" The frequencies for these various modes within the

framework of the l, 2 approximation are give_ by the following equations:

For the Wll mode,
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=0 (63)
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for the w12 mode,

_t2h_k2 - _(X2 + 4)_%--_

_ __),
3

8-
5P

_ _s_,_,
5

,__Gk2__b ,2h(4_2+4i33)
4b h 2b

_.,;,(__2+i33)9 b

8 -

-p
3

h _(_2 + i33)9 b

_2hk2 _b _2h(_33+_2)- h 2"0

=0 (64)

for the w21 mode_

8 -

b '.".-

8 pk _t2h k2 _b _2h (k27 4%- -T-_, +_33)

_.8,_ 32_h_,(_.__2_+_33_,
3 9b

and for the w22 mode_

8 -

_ _ p

9 b

- _- 2%--', 3_

=0 (65)

+ 8-
'_2-b _- ;_(4_'2 4)] _ P_'

_;, ,_ _ _b '_(_'_ + _3_)y G- -G-- 2b ,

_- - 9_ _ _'(_ + _)

8 -

-yp

9 b

--T- +

= o (66)

In each case the smallest real positive value of k which makes the

determinant vanish corresponds to the desired natural frequency.

TOTAL POTENTIAL ENERGY EXPRESSION

The derivation of the theory has been carried out using the poten-

tial energy in varied form. It is of interest to write the total poten-

tial energy expression because such an expression is useful in obtaining
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approximate solutions. The potential energr is assumed to be measured

from the condition of the plat£ after it ha;; been inflated and after

inplane edge loads NNx and NNy have been applied. In this state

the displacements and rotations u, v, w, _, and _ are assumed to

be zero and the quantities N_, N_, and Ni_y are assumed to be known

and independent of u, v, w, % and _. Then, additional loads qx,

qy, qz, _N, MNx, and MNy are applied. For this situation, the total

potential energy for the small deflections }f a tapered inflatable plate of

arbitrary planform shape can be written in terms of displacements and

rotations as

o o o 1 o
x_,x+ Ny_,y+ _xy(U,y+ _,x)+ _ ,x- (h,_+ _y_)

+ Ny ,y + _xy ,_ - _(h,x_ + h,y_) w,y

hh d- _( ,x= + h,y_),

,Y

2 x + 2 ,x xyk2 + ,

+ A33(Uy+ V x)2 + _12U,xV,y + -g i_ ,x+

+ A22 ,y + (13 + W,y) + 2A12 ,
h,x

- ph + v + u, - u, c_W,x,x ,Y x v,y yV, x 2 2 - _W,y

(67)
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In writing equation (67) terms of higher than second degree in displace-

ments and rotations or their derivatives have been neglected. In addi-

tion, inertia effects are neglected. Variation of equation (67) with

respect to u, v, w, mj and _ yields with a little manipulation the

differential equations (31) (with the inertia terms set equal to zero)

and the boundary conditions (52).

In many problems only lateral deflections are desired and inplane

displacements are not of primary concern. Then equation (67) can be

simplified for use in obtaining approximate solutions by dropping all

terms containing u or v or their derivatives.

For a rectangular plate with edges x = O,a and y = 0,b the

double integration in equation (67) is, of course, performed over x

from 0 to a and over y from 0 to b. By noting that on the

edge x = a, N-Nx = N-x, N-Ny = N-x_, _N = _x, MNy = Mx, and MNx = -M-xy,

on the edge x = 0, N-Nx = -Nx, NNy = -Nxy, VN = -Vx, MNy = -Mx,

MNx = Mxy, and so forth_ the line integral in equation (67) becomes

10bI x Ill
Io - I- dx (68)

For a triangular plate oriented as shown in the following sketch

Y

C

C

X



4O

the double integration in equation (67) can be perfomned first over y

x) and then over x fron 0 to Z. The line inle-from 0 to c -
l

gral becomes

Z(_N×U+ _Ny_ + VN_ + MNy_ MN_)_I,_m -
dx

+ ?ci - _ , dy
0 Nxu + _xyv + Vxw + Mx_ + Mxy_j x=0

Z(Nxyu + _yV + VyW + Mxy_ _ dx (69)

CONCLUDING R_RK_I

A linear theory has been developed which describes the behavior of

inflatable plates such as Airmat. A rough :ndication of the range of

applicability of the linear theory is obtained in an appendix by carrying

out a nonlinear analysis of a simple problem and comparing the results

with the linear solution. The theory turns out to be essentially the

same as sandwich-plate theory in which tran_verse shear deformations

are taken into account. The internal press1_re in the inflatable plate

is analogous to the transverse shear modulu_ in the sandwich plate.

Some simple static lateral deflection and v:bration problems are solved

for rectangular inflatable plates of consta_it depth.

Langley Research Center,
National Aeronautics and Space Administration,

Langley Field, Va., June 21, 1961.
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APPENDIXA

CHANGEIN VOLUMEOFINFLATABLEPLATE

L
9
i

9

Analytical Approach

In order to calculate the work done against the internal pressure

in an inflatable plate it is necessary to know how the volume of the plate

changes due to displacements in the covers and along the edges. The

derivation of the change in volume in terms of u, v, w_ _, and

is presented in this appendix.

The derivation is carried out using the formula from calculus for

determining the volume of a three-dimensional body by integrating over

the surface enclosing the body. (See ref. i.) Thus, the volume of the

deformed plate is given by

v = -Jfs _ d_ d_
(AI)

where _, _, and _ denote rectangular Cartesian coordinates (along

the x-, y-, and z-axes, respectively) locating points in the surface of

the deformed plate. The double integral in equation (AI) is a surface

integration carried out over all external surfaces of the plate in the

deformed state. The negative sign in equation (AI) arises because the

surface of integration is assumed to be oriented so that an inward

normal is positive.

The initial volume of the plate can be represented by the integral

(A2)

which is simply a double integration over the undeformed middle plane

of the plate. The change in volume _V is given by the difference

between V and the quantity (A2) as

AV : -ffS _ d_ d_ - _h dx dY
(A3)
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Evaluation of Surface Integral

Upper cover.- The contribution of the sulface integral over the

upper cover of the plate can be written by substituting

= x + u+(x,y_

= y + v+(x,y)

h
= 5 + w+(x,y

(A4)

into the integral in equation (AI). Over the upper cover, then, this

integral is

+

_(_,n)

_(x,y)
ax dy (AS)

L

9
1

9

where the deformation of the upper surface is considered to be a transfor-

mation of coordinates from the xyz system to ]he _ system as given by

equations (A4). The double integral on the r:i.ght-hand side of equation (AS)

is performed over the undeformed middle plane of the plate, and the quan-

tity b(_,_) is the Jacobian of the transfo_lation from the _-plane to

_(x,y)
the xy-plane. The upper cover projects onto -_he xy-plane in a negatively

oriented region; thus, the minus sign of equa_ion (AI) is canceled out on

the right-hand side of equation (AS). The Ja_obian is

b_ b_ 1
bx @i

bx by

:(1+U+,x)(l+V+,y)-U+,yV+,x

On substitution of equations (A_) and (A6) in!_o the integral (Ag), there

results for the contribution of the surface i:itegral over the upper cover

to the volume of the deformed plate
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_(x, y) _ u+, x v+, y u+, xV+, Y

L

9
1

9

q
+

w+ + w+u+, x + w+v+, y + w+u+, xV+, y - w+u+, yV+, xl
dx dy

(A7)

Lower cover.- For the lower cover of the plate the quantities _,

D, and _ are expressed in terms of displacements and the xyz coordinates

as follows:

= x + u_(x,y)"]
I

y + v (x,y) )

I
h- _ + w_(x,y)3

(A8)

The surface integral over the lower cover becomes

IIs I] _(_'_)_ dy- _ d_ dn = - _ _(x,y)
(Ag)

where the minus sign must be retained because the lower cover projects

onto the xy-plane in a positively oriented region. The Jacoblan is now

written

_(_,_)

_(x,y)

_x

: B_A

8x

3y

8__
8y

+ _u_,v_,= (AlO)

and the contribution of the integral over the lower cover to the volume

of the deformed plate is



44

dy 5( + U x + V + U 2-,y xV-,y - u_, yV_3 x )

- w_ - w u - w_v_ y- w u v- -,x - -,x -_y

+ w_U_,yV_ xldx dy
(All)

Edge.- It is assumed that the drop cords along the edge of the plate
remain straight as they are displaced. Thus, the final coordinates of

points along the edge of the plate are given by the following functions:

u+(_,y)- u_(_,y) u+(x,y)+ u (_,y)
=x+ z+

h 2

v+(_,y)- __(_,y) v+(_,y)+ __(x,y)
=y+ z+

h 2

_+(x,y)- w_(_,y) _+(_y) + w_(×,y)
= Z + Z +

h 2
.J

(AL2)

In these equations x and y are on the boundary of the middle plane

of the plate and can be thought of as functlo_s of s, the coordinate

along this boundary. The surface integral ow:r the plate edge can be
written

L

9
1

9

- : - _ dz ds
ge J _ -h/2 _(z,s)

(AZ3)

The normal vector to the plate edge projects onto the z,s surface in a
positive region; hence, the minus sign is retsined in equation (A13).

The Jacobian in equation (A13) is
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lu+ - u _____ + ____d__y

h _ ds _y ds

v+ - v_ __fi dx + ____d_Z
h _x ds _y ds

u+ h-u_[(v+_z+v+,x+v_,x]u+_u_
,x 2 ds h

+
V+_y + v_ y.]dy v+ - v_

2 J ds h
+ ._ z +

_X

z +
h h y

u

U+,y + u_, Y]__ZY

2 Dds

+_ X -_ dx

2 ds

(A_4)

When the last of equations (AI2) and equation (AI4) are substituted into

equation (AIS), the contribution to the volume of the surface integral

over the plate edges becomes

+
w+ +w_[(u+-u_)¢,x+_. _-'_-)._s_+(1 + _)(_- )V+_y + v_, + u_ dy

2 h hd-_

i + as (Al_)
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Total volume.- The total volume in the deformed plate is, of course,

simply the sum of equations (AT), (All), and (AI_). When equations (4)

are used to express the deformed volume in teems of the overall plate

displacement and rotation quantities, there i_ obtained

,
x]+ x+<h0>,+<h>,Ux<h0>xU,

+ (h_),xV, y- (h_),yV, x])dx dy- _([(i + e)_25(_,x - _,x)

(A].6)

L

9
1

9

Simplified Expression for Chan_e in Volume

Since a linear theory is sought, any terms in equation (A_I6) which

are of a degree higher than two in the plate displacements and rotations

or their derivatives may be neglected. Higher degree terms lead to

nonlinearities in the differential equations which result from the appli-

cation of the variational technique. With this simplification the change

in volume due to displacements in the inflatable plate becomes

AV = $$1hu, x + hv, y + hu, xV, y- hu, yV, x + _(h_),x(h_),y- l(h_),y(h_),x

+ he + w(hm),x + w(h_), dx dy- _(m8, x - _,x) - wh dx
ds

When the relations
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ds 8N

dy _x|
(A_8)

L

9
1

9

are utilized, Gauss' theorem in the form given in equation (27) can be

applied to the line integral in equation (A17). The final result for

_V, after substitution for e in terms of _ and _, is

h2AV = h ,x + _,y + u_vy - U yVx + _(%x_,y - %y_,×)

2

7
_--2- c_W,x - _3W,yldx dy

3
(_9)
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APPENDIX B

ESTIMATION OF VALIDITY OF LINEAR THEORY

A simple problem is discussed in this appendix in order to provide

some idea of the range of parameters for which linear theory is valid.

The results of a nonlinear analysis of the problem are compared with the

results of the linear analysis. The problem considered is a long

plate of constant depth which, after inflation, is simply supported on

its long edges in such a manner that these ed_gs cannot move. For

simplicity the plate is assumed to be loaded hy a uniform lateral load

equally divided between the upper and lower ccvers. For the linear solu-

tion, the manner in which the loading is divided between the covers is

immaterial. For a nonlinear solution, on the other hand, if the loading

is not equally divided between the covers, an additional nonlinear term

arises in the theory. A cross section of the plate under consideration

is shown in figure 5. The x-axis is assumed to be normal to the long,

simply supported edges, and the distance between these edges is L.

For this problem the potential energy in varied form can be written

as follows when nonlinear terms are included:

f0[(uL _ _-_x+ ÷ +e x)
8H : Nx8 ,x + 2 _- ,x

- ph_(ux+ e -=W,x+ eU,x)- q_w]_ (B1)

where

Nx = ph + Nx

t

(uNx --2All ,x + _ x + _" e x

Mx:7 All(%X+e,xWx)

_2

e = - T

L

9

i

9
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When the variation of equation (BI) is performed and appropriate integra-

tions by parts are carried out, there results the following system of

nonlinear differential equations:

Nx, x + phc_% x = 0

NxW,xx+Nx,xW,x + ph(_+ W,x),x- (Mx=_),x÷ qz:o

h2 a_2
_,x- Nx_ ,x- Ph3 _ 2 ( h2 %xCL2 )4 ,x + Nx -4- -,x

Ph 3 / 2

+ --_-k%x _ /
_X

- (GW,x,_),x+MxW,xtx - p_(,_+ W,x)- phu,x_= o

and the following boundary conditions at x = 0 and L:

(BS)

u = w = 0

h 2 ph 3

MX - MxW,x _ + Nx -_- %x _2 + _ %x _2 =

(_)

This system of equations can be simplified (partially linearized)

by assuming that a and its derivatives are small compared with w

and its derivatives and by neglecting terms of second degree or higher

in a and terms which contain products of a times w or u or their

derivatives. For practical inflatable-plate proportions, this assumption

appears justified in this problem. When the equations are simplified in

this manner there results the differential equations

Nx, x = 0

_xW,xx + ph(,_+ W,x),x+ qz: o } (Bs)
I

ph( +W,x): o J

and the boundary conditions at x = 0 and L

u = w =M x = 0 (_)
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whe re

Nx = 2All u,x +

h2

Mx = _-- All_,x

An exact solution to this system of equ_tions can be obtained.

The result is in terms of rather involved tr_mscendental expressions,

however, and it is difficult to find a relationship between the nonlinear

and linear solutions. For the purposes of this appendix a simple approxi-

mate solution using the Galerkin method sufffces.

Equations (BS) can be written

i_, =C IU, x + 2 X

2AIIClW, xx + ph(c_ + w X),x

(B8a)

= -qz (BSb)

) 0_- Allm, xx - W,x =
(B8c)

whe re

and L

C1 is a constant and the boundary cor_ditions (B6) at x = 0

8.re

=0
U =W =GS, X

(Bg)

The following assumptions for w and _ sa_,isfy the last two of equa-

tions (Bg) exactly:

_x
w = wI sin kn±ua)L

_x (BlOb)
= ml cos -_

When equations (BIO) are substituted into e_.ation (BSb) and the

resulting equation is multiplied by sin ___x and integrated over x
L

from 0 to L, there results
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ph _ ph w
AllClW Z +_-_IZ + 2 Z --qz (ml)

From equation (BSc) there is obtained

-Wl

h2Allf  2
2 _ \ZI + 1

(B]2)

The constant C1 is obtained by substituting equation (BlOa) into

equation (B8a), integrating to find u, and using the boundary conditions

u = 0 at x = 0 and x = L. The result is

When equations (BI2) and (BI3) are substituted into equation (BII), some

algebraic manipulations lead to

w I [ w 2 i] 4% _2 J+l
P _2_2n J

(BI4)

where J 2ph\ L / Calculations showed very little difference between

this approximate result and the exact solution. The linear solution is
2lw.\

obtained when (J+ 1)[_) is neglected compared with unity.
It is

easy to see, for instance, that the linear solution is within 5 percent

of the nonlinear solution provided that

(J + i) < o.o9 (BIS)

This result is strictly applicable only to the problem under considera-

tion in this appendix but does give a rough indication of what might

happen in other problems.
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Z+

f
Z

h,y

h,y/

-T Y
h'_x /Upper cover

"k_ _Middle plane

(lies in xy - plane)

Lower cover / \Drop cords

(a) Plate having linear taper in depth and arbitrary shape in planform.

h,y

-7- h,___
2

Drop cords

h,x

h,y 2

2

(b) Enlarged view of plate element showing taper angles.

Figure 1.- Inflatable plate with basic coordinate systems.
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(a) Stress resultants and

displacements.

(b) Moment resultants and

rotations.

Figure 2.- Plate stress resultants, moments, and twists; plate displace-

ments and rotations applied to an element in their positive senses.
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Figure 3.- Cross section of long uniformly loaded inflatable plate

simply supported on long edges.
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